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Fig. 1. Top row (small): some sampled style exemplars. Bottom two rows: input images, results from Toonify [Pinkney and Adler 2020], and our results for
multiple styles. Given a single input image, our method can quickly (130 ms) and automatically generate high quality (1024×1024) portraits in various artistic
styles. For a new style, our agile training strategy only requires ∼100 style exemplars and can be trained in 1 hour. Please magnify to see details. Cartoon style
exemplars are from our dataset. Others are courtesy of Qingqian for comic style images; Cornelis Jonson van Ceulen the Elder,Abraham de Vries,Villers for Oil
painting; The input images are courtesy of Michael Bull(Public Domain) and Ritvars Stankevičs(Public Domain).

Portraiture as an art form has evolved from realistic depiction into a plethora
of creative styles. While substantial progress has been made in automated
stylization, generating high quality stylistic portraits is still a challenge, and
even the recent popular Toonify suffers from several artifacts when used on
real input images. Such StyleGAN-based methods have focused on finding
the best latent inversion mapping for reconstructing input images; however,
our key insight is that this does not lead to good generalization to different
portrait styles. Hence we propose AgileGAN, a framework that can generate
high quality stylistic portraits via inversion-consistent transfer learning. We
introduce a novel hierarchical variational autoencoder to ensure the inverse
mapped distribution conforms to the original latent Gaussian distribution,
while augmenting the original space to a multi-resolution latent space so
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as to better encode different levels of detail. To better capture attribute-
dependent stylization of facial features, we also present an attribute-aware
generator and adopt an early stopping strategy to avoid overfitting small
training datasets. Our approach provides greater agility in creating high
quality and high resolution (1024×1024) portrait stylizationmodels, requiring
only a limited number of style exemplars (∼100) and short training time
(∼1 hour). We collected several style datasets for evaluation including 3D
cartoons, comics, oil paintings and celebrities. We show that we can achieve
superior portrait stylization quality to previous state-of-the-art methods,
with comparisons done qualitatively, quantitatively and through a perceptual
user study. We also demonstrate two applications of our method, image
editing and motion retargeting.
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to-Image Translation, StyleGAN
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1 INTRODUCTION
Portraiture, the art of depicting the appearance of a subject, is an
important art form dating back to the beginning of civilization. It has
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evolved beyond faithful depiction into more creative interpretations
with a plethora of styles, such as abstract art, Cubism and cartoon.

Automatically stylized portraiture has undergone rapid progress
in recent years due to advances in deep learning. Early methods
involving neural style transfer [Gatys et al. 2016; Li and Wand 2016;
Ruder et al. 2016] have convincingly demonstrated the ability to
transfer textural styles from an exemplar source to target images,
with real photos transformed into Van Gogh or Picasso paintings.
However, when it comes to portraiture, these methods largely failed
to capture the important geometry-dependent motifs of different
portraiture styles, thus falling short in stylization quality.
Image-to-image translation methods were later introduced to

“translate” images from a source domain to a target domain using
paired datasets in a supervised manner [Isola et al. 2017; Wang et al.
2018], or using unpaired datasets in an unsupervised setting [Huang
et al. 2018; Liu et al. 2017; Zhu et al. 2017]. These methods have been
explored for portrait stylization, e.g. self-to-anime [Kim et al. 2020]
and cartoon [Li 2018]. However, supervised approaches require
paired datasets for training that would be manually onerous if not
infeasible, while the unsupervised approaches not only need a large
amount of unpaired data, but also often face difficulties with stable
training convergence and in generating high-resolution results.

A recent portrait stylization pipeline, Toonify [Pinkney and Adler
2020], was proposed which builds on a pre-trained model of the
high-resolution generative neural network StyleGAN2 [Karras et al.
2020b]. Using only around a few hundred unpaired exemplars, it
had the ability to generate promising results in cartoon style, by
employment of transfer learning to adapt StyleGAN2 to the given
style exemplars. When given an input image, the corresponding
latent code was obtained by an optimization-based inversion in one
of the StyleGAN2 latent spaces, which is then used to generate the
stylized output via the adapted StyleGAN2 model. Despite its strong
generalization ability given only limited exemplars, the stylization of
real input images (in contrast to StyleGAN2 realistically synthesized
ones) nonetheless still resulted in various artifacts, likely due to the
sub-optimality of the inversion method used.
Our key insight is that attempting to find the best inversion

mapping in terms of reconstruction in the original StyleGAN2 is in
fact misguided, because what is best for realistic images may not
be the best for other stylized generators. What we discover instead
is that if we learned an inversion mapping that also optimizes for
matching the distribution of latent codes to the Gaussian latent
distribution in the original StyleGAN2, the inversionmappingworks
better across a range of different stylized generators. In other words,
matching latent distributions when learning the inversion leads to the
best robust embedding across different styles, and is better than aiming
for the best reconstruction embedding for realistic images. See Fig.2.
To this end, we propose AgileGAN, a novel inversion-consistent

transfer learning framework for high quality portrait stylization
using only limited exemplars. This allows us to agilely create high
quality and high resolution portrait stylization models in a variety
of target styles (Figure 1).
To achieve inversion consistency in our AgileGAN framework,

we introduce a novel hierarchical Variational Autoencoder (hVAE)
to perform inversion. Compared to recent latent space inversion
methods [Abdal et al. 2019a; Karras et al. 2019; Tewari et al. 2020;

Fig. 2. t-SNE visualization of the latent code distributions for different in-
version methods [Karras et al. 2020b; Richardson et al. 2020; Zhu et al. 2020],
and the relation to stylized image quality. The gray dots are sampled from
the original StyleGAN2 latent distribution. Having a latent code distribution
that is better aligned to the original leads to more pleasant results. More
details about the t-SNE distributions are provided in Sec.4.2. The input
image is courtesy of Ritvars Stankevičs(Public Domain).

Zhu et al. 2016] that usually operate on the less entangled latent
space𝑊 , our hVAE approach ensures the mapping conforms to the
multi-variate Gaussian distribution of the original StyleGAN2 latent
space. Furthermore, our hVAE approach is hierarchical in the sense
that we augmented the StyleGAN2’s original 𝑍 latent space to a
multi-resolution latent space 𝑍+ to better encode different levels of
detail in the image. We show that using our 𝑍+ augmentation and
hVAE can significantly improve stylization quality.

To improve the training efficiency with a high resolution dataset,
we decompose the training process into two stages. First, we train
hVAE for inversion encoding using the original StyleGAN2 as the
decoder with fixed pre-trained weights. During training, we en-
force reconstruction loss, user identity loss, perceptual loss and
KL divergence loss for VAEs. Second, we adopt a similar trans-
fer learning approach to Toonify [Pinkney and Adler 2020]. We
sample latent codes in 𝑍+ from a multi-variate Gaussian distribu-
tion and then fine-tune an attribute-aware generator starting from
StyleGAN2’s pre-trained weights. The training losses include an
adversarial loss with the given style exemplars, a facial structural
loss [Zhang et al. 2018], as well as R1 [Mescheder et al. 2018] and
perceptual path-length [Karras et al. 2020b] regularization losses.
The attribute-aware generator includes multiple generative paths
for different attributes (e.g. gender) and multiple discriminators to
better capture attribute-dependent stylization of facial features. To
avoid overfitting caused by a small training dataset, and to better
balance identity and style, we adopt an early stopping strategy in
training. During inference, the hVAE encoder and attribute-aware
generator can be pipelined to generate stylized output from input.

Our approach provides greater agility in creating high quality and
high resolution (1024×1024) portrait stylization models, requiring
only a limited number of style exemplars (around 100) and short
training time (around 1 hour). To evaluate our method, we collected
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a number of artistically styled datasets, including 3D cartoons, oil
paintings, comics and a few celebrity photos. We show that we
can achieve superior quality to previous state-of-the-art portrait
stylization methods, including Toonify [Pinkney and Adler 2020],
with comparisons done qualitatively, quantitatively and through
a perceptual user study. In addition, we demonstrate the ability
to change 3D viewpoints and illumination using [Shen and Zhou
2020] in the latent space and to perform motion retargeting using
[Siarohin et al. 2019] on the resulting stylized portraits. Finally, we
include an ablation study on the key components of our system and
demonstrate that our hVAE approach outperforms several state-of-
art StyleGAN inversion methods in terms of inversion consistency.
To summarize, the key contributions of this paper are:
• A novel method that can agilely create high quality portrait
stylization models with limited numbers (around 100) of un-
paired style exemplars and short training time;

• An inversion-consistent transfer learning framework that
solved the inversion discrepancy problem in transfer-learning-
based stylization;

• A hierarchical Variational Autoencoder and its associated
augmented 𝑍+ latent space that captures different levels of
facial features for improved portrait stylization.

2 RELATED WORK
We review some existing researches that are relevant to the portrait
stylization problem addressed in this paper.

Face Stylization. Stylizing facial images in an artistic manner has
been explored in the context of non-photorealistic rendering. Early
approaches relied on low level histogram matching using linear
filters [Heeger and Bergen 1995]. Neural style transfer [Gatys et al.
2016], by matching feature statistics in convolutional layers, led to
early exciting results via deep learning. Since then, several improve-
ments have been proposed. Li et al. [2016] enforced local patterns
in deep feature space via a Markov random field (MRF). Runder et
al. [2016] extended style transfer to video and improved the quality
by imposing temporal constraints. Although those methods can
achieve generally compelling results for several artistic styles, they
usually fail on styles involving significant geometric deformation
of facial features, such as cartoonization.
For more general stylization, image-to-image (I2I) translation

may be used to translate an input image from a source domain to a
target domain. The seminal work here is "pix2pix" [Isola et al. 2017],
which used a conditional generative adversarial network [Goodfel-
low et al. 2014] to learn the input-to-output mapping. Similar ideas
have been applied to various tasks, such as sketches-to-photographs
[Sangkloy et al. 2017] and attribute-to-image [Karacan et al. 2016].
However, these methods require paired training data, which is hard
to obtain. To avoid this, conditional image generation may be ap-
proached in an unsupervised manner. For example, the well-known
cycle-consistency loss in CycleGAN [Zhu et al. 2017] was proposed
to improve network training stability for the unpaired setting. Un-
supervised methods have also been used in cartoonization. Li et
al. [2018] extended CycleGAN [Zhu et al. 2017] to cross-domain
anime portrait generation. Kim et al. [2020] incorporated an atten-
tion module and a learnable normalization function for cartoon

face generation, where their attention-guided model can flexibly
control the amount of change in shape and texture. Although these
methods can conduct plausible image translation, such networks
require extensive training data, and thus most were only trained for
relatively low image resolutions. Very recently, [Pinkney and Adler
2020] proposed a GAN interpolation framework for controllable
cross-domain image synthesis, called Toonify, which can generate
photo-realistic cartoonization. However, their inversion mapping
when applied to real images often introduces undesired artifacts
in the stylized output. In contrast, our proposed VAE inversion en-
hances distribution consistency in latent space, which leads to better
results for real input images.

Generative Adversarial Networks (GANs). GANs have been used
to synthesize images that ideally match the training dataset distribu-
tion via adversarial training. Starting from Goodfellow et al. [2014],
GANs have been applied to various areas, e.g. image inpainting
[Yuan et al. 2019], image manipulation [Bau et al. 2019a] and texture
synthesis [Gecer et al. 2020]. Various advancements have been made
to improve the architecture [Gulrajani et al. 2017], synthesis quality
[Mao et al. 2017], and training stability [Mao et al. 2017]. However,
initial methods only worked in low resolutions, due to computa-
tional cost and shortage of high-quality training data. Subsequently,
a high-quality human face dataset, CelebA [Liu et al. 2015], was
collected, and Karras et al. [2016] proposed ProGAN to train GANs
for high resolution image generation via a progressive strategy; this
can generate realistic human faces at a high resolution of 1024×1024.
Recently, Karras et al. [2019] also collected a high resolution human
face dataset called FFHQ, and, inspired by adaptive normalization for
style transfer [Huang and Belongie 2017], proposed a new generator
architecture StyleGAN to further improve face synthesis quality
to the level that is almost indistinguishable from real photographs.
Very recently, they [Karras et al. 2020b] extended this to StyleGAN2,
which has reduced artifacts and improved disentanglement by using
perceptual path length. Our work is built upon on StyleGAN2 and
leverages their pre-trained weights as initialization.

GAN Inversion. Since GANs are typically designed to generate
realistic images by sampling from a known distribution in latent
space, GAN inversion addresses the complementary problem of
finding the most accurate latent code, when given an input image,
that will reconstruct that image. One approach is based on opti-
mization [Abdal et al. 2019a; Karras et al. 2019; Tewari et al. 2020],
directly optimizing the latent code to minimize the pixel-wise re-
construction loss for a single input instance. Another approach is
learning-based [Zhu et al. 2016], in which a deterministic model is
trained by minimizing the difference between the input and syn-
thesized images. There are also some works that combine these
ideas, e.g. learning an encoder that produces a good initialization
for subsequent optimization [Bau et al. 2019b]. In addition to image
reconstruction, some methods also use inversion when undertak-
ing image manipulation. For example, Zhu et al. [2020] introduced
a hybrid method to encode images into a semantic manipulable
domain for image editing. Recently, Richardson et al. [2020] pre-
sented the generic Pixel2Style2Pixel (PSP) encoder. This is based on
a dedicated identity loss for embedding images in several real image
translation tasks, such as inpainting and super resolution. However,
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these methods for single domain manipulation or reconstruction
may not be directly applicable to cross-domain generation, due to
insufficient consistency in the latent distributions, which is the issue
addressed in our method. Our motivation is also related to PULSE
[Menon et al. 2020], which involves GAN latent space exploration
for photo upsampling. Here regularization is done by sampling from
and constraining the exploration to a hypersphere prior in latent
space. While this can improve the quality of super-resolved results,
it does not prevent the sampling to be skewed from the underlying
image distribution. In contrast, our approach is directly aligned with
the variationally-derived principles of the VAE, and thus will lead
to samples that collectively fit the ground truth image distribution,
as mapped from the StyleGAN Gaussian latent 𝑍 prior.

Learning with Few Samples. Training a modern high-quality, high-
resolution GAN typically requires 105 images, which is a costly
undertaking in terms of acquisition, processing, and distribution.
There are a few techniques to reduce such requirements. For exam-
ple, Liu et al. [2019] and Wang et al. [2019] introduced a few-shot
learning technique to perform appearance translation without need-
ing a large dataset of specific style translation pairs. However, a
pre-trained style embedding network is required and the generated
image resolution is limited. Conversely, the idea of patch-based train-
ing [Shaham et al. 2019; Shocher et al. 2018] was further explored,
as less training data is needed when learning patch distributions.
However, such techniques may not easily be relevant to portrait
generation, since human faces have strong geometry semantics
and may not simply be reduced to smaller patches for training. To
address the data shortage, our method is based on applying trans-
fer learning to StyleGAN2, adopting an early stopping strategy to
generate optimal results.

3 METHOD
Given a small set of stylistic exemplars, our goal is to design a
pipeline that generates a high quality stylized images from real
portrait images as input. The output image should be recognizable
as the input subject’s identity. It should also preserves subject’s
pose and expression. Last, it should be rendered in a style that is
consistent with the provided stylistic exemplars.
The overall pipeline is shown in Fig. 3. The starting basis for

our pipeline is a pre-trained StyleGAN2, and recall that if we took
random samples from a Gaussian distribution in the Z latent space, it
will generate images fitting the original training distribution (FFHQ).

In general, there are two major stages involved in our training
pipeline. (A) Since our task involves using an image as input, we
want to determine its corresponding latent vector for StyleGAN2.
We therefore train a front-end encoder in a VAE setting to map
input images into latent space, while keeping the back-end Style-
GAN2 generator fixed. (B) Starting from a copy of the pre-trained
StyleGAN2, we fine-tune this generator such that if we sample from
a Gaussian distribution in latent space, it will generate images that
better fit the stylistic exemplars given.

Notice that the two training stages are execution independent and
can be trained in parallel. However, structurally the two stages have
shared pivot latent spaces (Z+ and W+ described later), and are also
jointly anchored by the fixed StyleGAN2 generator. There are three

unique benefits of breaking down the entire generation problem into
two stages: 1) the training does not require paired datasets, unlike
typical image-to-image translation methods[Isola et al. 2017]. 2) the
separation of training also enables higher resolutions by reducing
computational load in making backpropagation more effective and
efficient. 3) the compartmentalization of the pipeline allows greater
agility, whereby new style domains can be incorporated by only
fine-tuning the generator instead of the entire pipeline.

Over the following sections, we will introduce a new embedding
space 𝑍+, and a hierarchical variational autoencoder (hVAE) using
pyramid feature extraction to better embed and reconstruct human
faces. We then present an attribute-aware generator with a multi-
path structure, trained for synthesizing stylized images through
transfer learning using a combination of GAN loss, similarity loss
and regularization loss. Finally at inference stage, the encoder and
stylized generator are combined to form a single-pass pipeline.

3.1 Z+ Space
The pre-trained StyleGAN model [Karras et al. 2019, 2020b] is
equipped with two latent spaces: the original latent space 𝑍 un-
der a Gaussian distribution, and a less entangled𝑊 space, which
is mapped from 𝑍 through a Multi-Layer Perceptron (MLP) 𝑓 . The
original StyleGAN2 generation is conducted in a coarse-to-fine man-
ner using several disentangled layers but with the same latent code
input to each layer. Inspired by Image2StyleGAN [Abdal et al. 2019a]
that enlarges StyleGAN’s𝑊 space to𝑊 + space, we chose to increase
our model’s expressiveness by using a different latent code from 𝑍

for each layer, allowing for individual control. This is equivalent
to stacking multiple versions of the original latent space 𝑍 to form
a new space 𝑍+. Unlike Image2StyleGAN [Abdal et al. 2019a] that
targets pixel-level reconstruction by embedding into𝑊 + space, we
adopted 𝑍+ for two reasons. 1) our task involves cross-domain im-
age generation. This makes it harder to directly embed into the𝑊 +
space without suffering deterioration in stylization quality, since we
cannot assume all the codes in𝑊 + are appropriate for stylization.
2) the𝑊 + space is covered by a complex non-Gaussian distribution
[Wulff and Torralba 2020] and directly encoding images into𝑊 +
via a network may not correspond appropriately to a Gaussian dis-
tribution in 𝑍+. Conversely, our stylization task is best addressed
via 𝑍+ space, as the more constrained Gaussian modeling here leads
to better regularization across different styles.

3.2 Hierarchical Variational Encoder
Hybrid Variational Autoencoder. In order to inverse map an input

image back into the 𝑍+ latent space, we adopt a variational autoen-
coder (VAE) formulation [Kingma and Welling 2014; Rezende et al.
2014]. A typical VAE consists of an encoder E𝜃 and a decoder G𝜙

with respective parameters 𝜃 and 𝜙 , which are trained jointly to
minimize reconstruction error between input image 𝑥 and output
image 𝑥 ′. Here, we instead propose a hybrid variational autoencoder
for inversion that uses a fixed original pre-trained StyleGAN2 as the
decoder G𝜙𝑜

, and we focus only on training the encoder network
to learn the posterior distribution 𝑞(𝑧 |𝑥).

While a simpler alternative may have been to learn a determinis-
tic encoder, a VAE approach improves robustness and generalization
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Fig. 3. Pipeline overview. Our hierarchical VAE consists of an encoder and generator with different color arrows representing the different training dataflows
based on StyleGAN2. The blue arrows indicate image embedding, and the orange ones are for transfer learning. black borders indicate the block weights,
which are derived from a StyleGAN2 pre-trained on the FFHQ dataset, that are frozen during training. The input is courtesy of Erin Wagner(Public Domain).

Fig. 4. Structure of our hierarchical variational encoder.

ability, as the Gaussian sampling component introduces useful per-
turbations during learning. We train the encoding parameters 𝜃
using the stochastic gradient variational Bayes (SGVB) algorithm
[Kingma and Welling 2014] to solve:

𝜃∗ = argmin
𝜃

E𝑧∼E𝜃 (𝑥) [− log 𝑝 (𝑥 |𝑧)] + 𝐷𝑘𝑙 (E𝜃 (𝑥) | |𝑝 (𝑧)), (1)

where 𝐷𝑘𝑙 denotes the Kullback-Leibler divergence. The posterior
/ importance distribution, mapped by the encoder from 𝑥 , is mod-
eled as a multivariate Gaussian distribution 𝑞(𝑧 |𝑥) = E𝜃 (𝑥) =

𝑁 (𝑧𝜇 , diag(𝑧2𝜎 )), where 𝑧𝜎 , 𝑧𝜇 ∈ R18×512 are the multi-dimensional
output of E𝜃 (𝑥), representing the mean and standard deviation re-
spectively in a diagonal matrix form. The prior is 𝑝 (𝑧) = 𝑁 (0, 𝐼 ), as
used in StyleGAN2, and thus the KL divergence can be expressed in
the analytic form of

𝐷𝑘𝑙 (E𝜃 (𝑥) | |𝑁 (0, 𝐼 )) = 1
2

∑
𝑖

(1 + 2 log 𝑧𝜎,𝑖 − 𝑧2𝜇,𝑖 − 𝑧2𝜎,𝑖 ), (2)

where the summation applies across all dimensions of 𝑧𝜎 and 𝑧𝜇 .
Backpropagation is made differentiable via the reparameterization
trick [Kingma and Welling 2014], whereby 𝑧 can be sampled accord-
ing to:

𝑧 = 𝑧𝜇 + 𝜖 ⊗ 𝑧𝜎 , 𝜖 ∼ 𝑁 (0, 𝐼 ), (3)
where ⊗ is an element-wise matrix multiplication operator.

Hierarchical Feature Extraction. One unique aspect of StyleGAN2
is that the intermediate style codes mapped from 𝑍+ are injected
into different layers of the generator and can semantically control
image generation. The style codes broadly fall into three groups:
1) style codes lying in lower layers control coarser attributes like
facial shapes, 2) middle layer codes control more localized facial
features, while 3) high layer codes correspond to fine details such
as reflectance and texture. One straightforward way to embed an
input image is to directly estimate the combined latent code 18x512
𝑧 in 𝑍+ from a fully connected layer. However, it turns out to be
difficult to effectively train such a network.

To address this issue, we followed recent efforts [Lin et al. 2017]
and [Richardson et al. 2020] in utilizing the hierarchy of a pyramid
network to capture three levels of detail from different layers. Specif-
ically, the input image at 256×256 resolution is passed through a
headless pyramid network to produce three levels of feature maps
at different sizes, corresponding to coarse, medium and fine details.
Each level’s feature map goes through a separate sub-encoder block
to produce a 6×512 code. Finally, the combined 18×512 code can be
passed to the fully-connected layers to generate the means and stan-
dard deviations to represent the Gaussian importance distribution
in 𝑍+.

Loss Functions. Multiple loss functions are used in training our
encoder network E𝜃 . We first use 𝐿2 loss for reconstruction as
follows:

L𝑟𝑒𝑐 = L2 (𝑥,G𝜙𝑜
(E𝜃 (𝑥))) (4)

This measures the pixel-level differences between input image 𝑥
and generated output G𝜙𝑜

(E𝜃 (𝑥)). In addition, we utilize the LPIPS
loss [Zhang et al. 2018] to learn perceptual-level similarities:

L𝑝𝑒𝑟 = L𝑙𝑝𝑖𝑝𝑠 (𝑥,G𝜙𝑜
(E𝜃 (𝑥))) (5)

To preserve identity, we also use a facial recognition loss:

L𝑖𝑑 = L𝑎𝑟𝑐 (𝑥,G𝜙𝑜
(E𝜃 (𝑥))), (6)
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where L𝑎𝑟𝑐 is based on the cosine similarity between intermediate
features extracted from a pre-trained ArcFace recognition network
[Deng et al. 2019], comparing the intermediate features of the source
and output images. The KL divergence loss is defined as:

L𝑘𝑙 = 𝐷𝑘𝑙 (E𝜃 (𝑥) | |𝑁 (0, 𝐼 )), (7)

In combination, our total loss becomes

L = L𝑟𝑒𝑐 +𝑤𝑝𝑒𝑟L𝑝𝑒𝑟 +𝑤𝑖𝑑L𝑖𝑑 +𝑤𝑘𝑙L𝑘𝑙 (8)

where𝑤𝑖𝑑 ,𝑤𝑝𝑒𝑟 ,𝑤𝑘𝑙 are relative weights for the reconstruction loss,
perceptual loss, identity loss and KL divergence loss respectively.

Implementation Details. The hVAE parameters were trained on
the CelebA-HQ dataset [Lee et al. 2020; Liu et al. 2015], which
contains 28,000 high quality face images. To reduce network param-
eters and computation load, the input images were down-sampled to
256×256, with down-sampling also applied to reconstructed images
for computing the losses. The pre-trained StyleGAN2 used weights
from the config-f 1024×1024 FFHQ model [Karras et al. 2020b]. The
training parameters were fixed to be 𝑤𝑝𝑒𝑟 = 0.8,𝑤𝑖𝑑 = 0.8,and
𝑤𝑘𝑙 = 5 × 10−4. We minimized the objective function for 20 epochs
using the Rectified Adam solver [Liu et al. 2020]. We used a batch
size of 16 and learning rate of 1 × 10−3 on two 32GB Tesla V100
GPUs.

3.3 Attribute-Aware Generator
To generate stylized portraits, we train a generator using a relatively
small collection of stylistic exemplars. The generator is based on
StyleGAN2, but enhanced with a multi-path structure to better
adapt to different features corresponding to known attributes, such
as gender. The structure is shown in Fig. 5. To mitigate the small
dataset problem and better preserve user identity, we adopt transfer
learning and an early stopping strategy to train the generator.

Stylization. The training stability of StyleGAN2’s architecture,
and the availability of high-resolution pre-trained models, have
made it possible to achieve high quality cross-domain generation
using transfer learning. As artistic portraits share obvious percep-
tual correspondences to real portraits, our method uses a Style-
GAN2 model, pre-trained on the high-resolution real portrait FFHQ
dataset [Karras et al. 2019], as the initialization weights. The net-
work is subsequently transfer-learned on the smaller stylized dataset.
There are three key benefits of using StyleGAN2 for stylization: 1)
fine tuning can significantly reduce training data and time needed
for high quality generation, compared to training from scratch, 2)
StyleGAN2’s coarse-to-fine generation architecture can support
various artistic styles, including geometric and appearance styliza-
tion, and 3) the transfer-learned generator G𝜙𝑡

(𝑧) which is derived
from the original model G𝜙𝑜

(𝑧) can form a natural correspondence
when given the same latent codes, even with different generator
parameters of 𝜙 . Hence when given an input image 𝑥 , the inverse
mapped latent code 𝑧 can first be obtained from the VAE encoder,
and then passed to different stylized generators (trained on differ-
ent stylized datasets). This results in different stylized images, i.e.
{G𝜙1 (E𝜃 (𝑥)),G𝜙2 (E𝜃 (𝑥)),G𝜙3 (E𝜃 (𝑥)) ...}.

Multi-Path Structure. Typically, when artists design characters,
they often emphasize attribute-dependent characteristics to enhance
appearance. For example, facial features may be exaggerated dif-
ferently to accentuate femininity or masculinity (Fig. 6). Those
attribute-dependent characteristics usually involve different facial
geometric ratios as well as different facial features. Directly using the
existing single-path StyleGAN2 structure and a single discrimina-
tor may not be best at distinguishing these attribute-dependent
characteristics, while training several single-path generators to
cater to different attributes will increase time and memory. For
efficiency, we embed a multi-path structure within the same genera-
tor G𝜙𝑡

= {G𝑘
𝜙𝑡
}, 𝑘 ∈ A corresponding to the different attributes A,

while using multiple discriminators 𝐷 = {𝐷𝑘 }. Since lower layers
of the network guide coarse-level features like facial shapes, while
higher layers affect facial reflectance and textures, the multi-path
structure is more appropriately embedded within the lower layers.
Nonetheless, this structure can also be placed into the higher layers,
in situations where it may be more appropriate.

Loss Functions. The full objective comprises four loss functions
to fine-tune the generator G𝜙 . We first use an adversarial loss to
match the distribution of the translated images to the target domain
distribution:

L𝑎𝑑𝑣 =
∑
𝑘∈A

(
E𝑦𝑘 [𝑚𝑖𝑛(0,−1 + 𝐷𝑘 (𝑦𝑘 ))]+

E𝑧∼𝑁 (0,𝐼 ) [𝑚𝑖𝑛(0,−1 − 𝐷𝑘 (G𝑘
𝜙𝑡
(𝑧)))]

) (9)

where 𝑦𝑘 are target style images, classified by attribute 𝑘 . To pre-
serve recognizable identity of the generated image, we introduce a
similarity loss at perceptual level, given by a modified LPIPS loss
[Zhang et al. 2018]. Specifically, we discard differences from the first
9 layers of the VGG16-based LPIPS, and use the remaining differ-
ences from higher level layers. This helps in capturing the facial
structural similarity, while ignoring local appearance variation.

L𝑠𝑖𝑚 =
∑
𝑘∈A

30∑
𝑖=9

(
L𝑖
𝑙𝑝𝑖𝑝𝑠

(G𝑘
𝜙𝑡
(𝑧),G𝜙𝑜

(𝑧))
)
, (10)

To help improve training stability and prevent formation of artifacts,
regularization terms are employed. For discriminators, we use R1
regularization [Mescheder et al. 2018].

L𝑅1 =
𝛾

2

∑
𝑘∈A

(
E𝑦𝑘 [∥∇𝐷𝑘 (𝑦𝑘 )∥2]

)
, (11)

where 𝛾 = 10 is the hyper-parameter for the gradient regularization.
For the generator, we use a standard perceptual path-length regu-
larization L𝑝𝑎𝑡ℎ [Karras et al. 2020b] from StyleGAN2, which aids
reliability and behavior consistency in generative models.
Finally, the generator and discriminators are jointly trained to

optimize the combined objective of:

min
𝜙

max
𝐷

L𝑎𝑑𝑣 +𝑤𝑠𝑖𝑚L𝑠𝑖𝑚 +𝑤𝑅1L𝑅1 +𝑤𝑝𝑎𝑡ℎL𝑝𝑎𝑡ℎ, (12)

where 𝑤𝑠𝑖𝑚 = 0.5,𝑤𝑅1 = 5, 𝑤𝑝𝑎𝑡ℎ = 2 are relative weights for the
adversarial loss, similarity loss, and regularization loss respectively.
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Fig. 5. The architecture of our attribute-aware generator network. Each latent code 𝑧, sampled from a standard Gaussian distribution, is first mapped to
intermediate code 𝑤. Each 𝑤 is forward into an affine transform in the style block [Karras et al. 2020b] and controls the generation via adaptive instance
normalization (AdaIN) [Huang and Belongie 2017]. When decoding, a constant feature map is first initialized. Multiple paths are used in the lower layers for
attribute specificity, while shared high layers unify texture appearance. Multiple attribute-specific discriminators are used to evaluate quality of the generated
images. The network weights including discriminators are initialized from StyleGAN2.

Fig. 6. Examples of attribute (gender) dependent accentuated differences in
cartoons, including facial geometric ratios and features like eyelashes. The
normalized exemplars are from our cartoon dataset.

Dataset. We collected several artistic portrait images from multi-
image asset websites, and also rendered images from 3D models.
For the cartoon and comic styles, we rendered and collected some
100 images of each gender from two asset websites [pinterest 2021;
turbosquid 2021]. For the oil painting style, 100 images of each
gender were selected from the public Metfaces-dataset [Karras et al.
2020a]. For the two celebrity styles, we collected around 50 images
from the internet, ignoring attributes. For each image, we extracted
landmarks, conducted normalization by aligning eye positions, and
cropped to a 1024×1024-sized image.

Early Stopping Strategy. A major potential problem with small
datasets is that the discriminator may overfit the training examples,
causing instability and degradation in GAN training [Karras et al.
2020a]. Tomitigate this problem, we adopt an early stopping strategy
to cease the training once the desired stylization effect has been
achieved. As seen in Fig. 7, increasing the number of iterations
further may also lead to increased deviation from the original input
expression. To strike a balance between input fidelity and stylistic
fit, we can cease training early, e.g. after 1200 iterations.

0 300 1200 48002400

Fig. 7. Evolution of generative results after different training iterations.
Input images are generated from StyleGAN2.

Implementation Details. The weights of the generator and discrim-
inators are initialised based on the StyleGAN2 config-f 1024x1024
FFHQ model [Karras et al. 2020b]. This is then fine-tuned on a
chosen style dataset, at a learning rate of 0.002 and with mirror
augmentation. We used a batch size of 8 on two Tesla V100 32GB
GPUs. The number of iterations usually ranges from 900 to 2200
due to the early stopping strategy, taking about 1 hour to train for
each style.

3.4 Inference
Given an input face image 𝑥 , it is first warped and normalized to
256×256 based on its landmarks, and encoded by the hVAE to get the
latent Gaussian posterior distribution 𝑞(𝑧 |𝑥). Since this posterior /
importance distribution is only relevant during hVAE training, we
typically do not sample from this distribution during inference, but
directly use the distribution mean as the latent code 𝑧, which will
also better maintain temporal consistency. This 𝑧 is then passed
to the chosen stylized generator to generate a 1024×1024 stylized
image. However, in rare cases there may be high frequency artifacts
generated. In these cases, we can fall back on sampling multiple
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Table 1. Preference scores and Fréchet Inception Distances (FID) for differ-
ence stylization methods. Preference scores are computed over 1K questions,
while FID scores are computed from 2K images.

Algorithm Preference Score ↑ FID ↓
Toonify[Pinkney and Adler 2020] 25.4 82.7

CycleGan[Zhu et al. 2017] 1.3 109.3
UNIT[Liu et al. 2017] 10.8 123.9

UGATIT[Kim et al. 2020] 4.6 104.7
Ours 57.9 64.7

instances from the imputed Gaussian distribution, leading to multi-
ple output images. We can then select one without artifacts, either
manually or choosing the one with the smallest average percep-
tual distance [Zhang et al. 2018] among the output images. For the
gender attribute, a simple external pre-trained gender detector net-
work [Eidinger et al. 2014] is used. In total, the inference stage takes
around 130ms per image.

4 RESULTS

4.1 Artistic Portrait Generation
We present artistic stylization results from a variety of input images
in Fig. 18 and Fig. 19. For each input image, we show several artistic
styles. Results demonstrate that our method can robustly handle
input images that represent a variety of skin tones, genders, face
shapes and hair styles under different illumination conditions, cor-
rectly creating different stylization for those inputs. More results
and test code are provided in the supplementary file.1

4.2 Comparisons
Qualitative Results. In Fig. 8, the results of our method can be

compared to Toonify [Pinkney and Adler 2020] and other recent
unpaired image translation techniques, including CycleGan [Zhu
et al. 2017], UNIT [Liu et al. 2017] and UGATIT [Kim et al. 2020]. For
Toonify, we used the authors’ code and settings for training their
transferred generator on our cartoon dataset. In their method, they
used an optimization method [Karras et al. 2020b] for embedding an
input image in latent space, and fed the corresponding code to the
transferred generator. For the other three image translation methods
[Kim et al. 2020; Liu et al. 2017; Zhu et al. 2017], we also used the
respective authors’ code and settings to train their networks on the
CelebA-HQ training dataset and our cartoon dataset. Due to con-
vergence difficulties and GPU memory limitations, those methods
were not able to directly support 1024×1024 resolution, thus we
kept their original sizes of 256×256 for training and up-sampled the
output to 1024×1024 for comparison.
From Fig. 8, it can be seen that our method successfully car-

toonized subjects with visually pleasing results. Toonify’s results
exhibit some visible artifacts such as unusual yellowish patches.
As for the other unpaired image translation methods, besides not
supporting higher resolutions, they also did not cope well when
trained with limited exemplars.

1Accompanying material can be found at: https://github.com/GuoxianSong/AgileGAN.

Quantitative Results. We conducted a perceptual user study in
which 100 participants were shown stylization results from different
methods, and asked to select the best cartoonized images. Each par-
ticipant was shown 10 questions randomly selected from a question
pool containing 100 examples (using images with indices 0-99 in the
CelebA-HQ dataset). Table. 1 shows that results from our proposed
method had the majority preference.

Another metric to quantitatively evaluate generative quality is the
Fréchet Inception Distance (FID) score [Heusel et al. 2017], which
measures the visual similarity and distribution between two datasets
of images. Each method generated stylized images from the CelebA-
HQ dataset as input, and we computed the FID to the training
cartoon dataset. We can see from Table 1 that our method also
achieved the best performance on this metric, although it should be
noted that since there are fewer than 5K images in the CelebA-HQ
test set, FID scores may not be reliable.

Alternative Encoder Methods. We compared our hierarchical vari-
ational encoder to alternative embedding methods, including PSP
encoder [Richardson et al. 2020], in-domain encoder [Zhu et al.
2020] and StyleGAN2 optimization [Karras et al. 2020b], by evaluat-
ing with these substitutes. For the PSP and in-domain encoders, we
re-trained their model using the authors’ original code and settings
on the CelebA-HQ dataset. For the in-domain encoder, it also needed
additional optimization to refine the latent code by minimizing pixel
differences, perceptual loss and discriminator loss. We also com-
pared to the iterative optimization proposed in StyleGAN2 [Karras
et al. 2020b] and used in Toonify, as well as the enhanced iterative
optimization of Image2StyleGAN [Abdal et al. 2019b] that uses a
combination of pixel-level L2 and weighted perceptual losses.

Test images from the CelebA-HQ dataset were encoded by these
alternative methods directly into the𝑊 + latent space as per their
design, and fed to our transfer-learned generator. Please, note that
transfer-learned generator is trained independently and not in-
volved our hVAE encoder. In Fig. 9, it can be seen that our method,
which encodes into the 𝑍+ latent space, created stylized images that
are perceptually more pleasant. The structure and losses of the al-
ternative encoders are geared towards image reconstruction rather
than cross-domain consistency, which may lead to artifacts such as
unnatural color patches and blur in texture. Although the in-domain
encoder used a pixel-level discriminator to regularize the domain
embedding for semantic manipulation, it is still unable to synthesize
pleasantly styled images for a cross-domain generation task. We
also computed the FID scores from all test images of CelebA-HQ to
quantitatively evaluate the generation quality after each embedding
method. From Table 2, it can be seen that our method achieved the
best performance, although as mentioned previously, FID scores
may not be reliable for only 2K images. Nonetheless, our hVAE
can generally perform better than other embedding methods visu-
ally, reducing artifacts and improving stylized image quality. In the
supplementary material, we provide further visual comparisons. In
addition, we evaluate our encoder using a pre-trained Toonify model
as a generator from the official repo of Pixel2Style2Pixel[Richardson
et al. 2020] in Fig. 10. It shows our hVAE can improve generative
results and contain less artifacts.
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input ours Toonify CycleGan UNIT UGATIT

(a)

(b)

Fig. 8. Qualitative comparison of our method to state-of-the-art unpaired Image-to-Image translation techniques for cartoon style generation: Toonify
[Pinkney and Adler 2020],CycleGan [Zhu et al. 2017], UNIT [Liu et al. 2017] and UGATIT [Kim et al. 2020]. Input images are courtesy of PFA SEAL(Public
Domain) and Presidencia El Salvador(Public Domain).

input hVAE (ours) PSP in-domain

optimization 

(Toonify)

(a)

(b)

(c)

optimization 

(Image2StyleGAN)

Fig. 9. Stylization results of our transfer-learned model when using the different encoder methods of PSP [Richardson et al. 2020], in-domain [Zhu et al.
2020], Toonify optimization (as proposed in [Karras et al. 2020b]) and Image2StyleGAN optimization [Abdal et al. 2019b]. Notice that results from other
methods had greenish patches, blurry skin texture, and unnatural synthesis of eyes. Input images are courtesy of Ritvars Stankevičs(Public Domain),Alan
kardek Ribeiro(Public Domain), and Daryl Levine(Public Domain). Also, there are more comparisons in supplementary.

Table 2. Fréchet Inception Distances (FID) for different embedding methods, computed from 2K images. Lower scores are better.

hVAE (ours) PSP in-domain optimization (Toonify) optimization (Image2StyleGAN)
64.7 69.0 78.6 71.9 74.7
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(a)

(b)

input hVAE (ours) PSP

optimization 

(Image2StyleGAN)

Fig. 10. Our hVAE encoder is universal, and can improve other stylization
generator. Here, we compare hVAE with PSP [Richardson et al. 2020] and Im-
age2StyleGAN optimization [Abdal et al. 2019b] using a pre-trained Toonify
model as a generator from the official repo of Pixel2Style2Pixel[Richardson
et al. 2020]. Input images are courtesy of barbybennett(Public Domain) and
jang ba(Public Domain). More comparisons are presented in supplementary.

input ours(mean) ours(best)

(d)

input our multi outputs

(a)

Fig. 11. Our pipeline allows for multiple sampling, allowing selection that
avoids high frequency artifacts (a), and also to produce multiple diverse
renderings of the same subject (c). Input images are courtesy of Pavel
Savin(Public Domain) and svklimkin(Public Domain).

To better appraise the embedded latent distributions, we also visu-
alized each embedded latent space with the t-distributed stochastic
neighbor embedding (t-SNE) approach, shown in Fig. 2. For fair
comparison, we visualized the distribution in the𝑊 + space. To get
the original StyleGAN2 distribution, We first sampled the standard
Gaussian distribution in 𝑍+ space 2000 times, and then mapped the
samples through to𝑊 +. For our method, we embedded CelebA-HQ
test dataset using our encoder into 𝑍+, which were then mapped to
𝑊 +. For the other methods, the embedding of the test images were
done directly in𝑊 + space. In Fig. 2, it can be clearly seen that our
embedding distribution shares the greatest overlap with original
one, which demonstrate the greater consistency of our method.

4.3 Ablation Studies and Further Investigations
Multiple Sampled Outputs. Compared to other methods, one ad-

vantage of our VAE-based approach is that we can generate multiple

input w/o Z+w/o variationalfull model

(a)

(b)

Fig. 12. Qualitative results where different components in the encoder are
ablated (without 𝑍+ augmentation, without variational encoding and our
full method).Input images are courtesy of Great Place to Work Deutsch-
land(Public Domain) and Colegio Vimagio(Public Domain). More compar-
isons are presented in supplementary.
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(c) (d) (e)

Fig. 13. Assessment of the quality and consistency of our method with dif-
ferent poses and expressions. Input images are from a multi-view expression
dataset [Song et al. 2020].

results of the same person in a principled manner (without artifi-
cially adding latent noise) by sampling from the estimated posterior
/ importance distribution in 𝑍+. Fig. 11 showcases examples of mul-
tiple sampled results. In (a), artifacts may be present when coding
with the mean of the posterior distribution, but better samples can
easily be chosen manually. In (b), sampling can produce highly
diverse but realistic results.

Hierarchical Variational Encoder. To further verify the usefulness
of the designed modules in our hierarchical variational encoder,
we conducted ablation studies by removing each component, with
results shown in Fig. 12: (1) ’w/o Z+’: replace the latent space 𝑍+

with 𝑍 . (2) ’w/o variational’: remove the regularizer and replace
variational encoding with a deterministic encoder. For each study,
we retrained the encoder using the same settings, and also used same
generator. For ’w/o Z+’, embedding into 𝑍 space led to insufficient
reconstruction ability and expressiveness. For ’w/o variational’, we
can see using a variational encoder can generate perceptually better
stylization results with reduced artifacts, even for challenging input
images with occlusion.

Different Poses and Expressions. We also qualitatively assess the
generative quality and consistency of the stylized identity across
different facial poses and expressions. We generated several results
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(a)

(b)

(c)

input ours(female) ours(male) single

input ours(old) ours(young) single

(d)

Fig. 14. Stylization results for our multi-path attribute-aware model com-
pared to a single-path model. (a, b) are related to the gender attribute using
multi-path at low layers, while (c, d) are related to age using multi-path at
high layers. Please note attribute-sensitive features such as eye lashes and
wrinkles. Input images are generated from StyleGAN2.

input
Toonify

(fine-tuned only)

ours

(fine-tuned only)

Toonify

(layer swapping)

ours

(layer swapping)

Fig. 15. Stylization results compared to Toonify in two different settings: fine-
tuned only and layer swapping. Input images is courtesy of U.S. Department
of Agriculture(Public Domain).Please zoom in to see difference.

of the same individual with different facial poses and expressions,
as presented in Fig. 13. Our method performed well with poses
and expressions retained from the input images, and the stylized
character is recognizably the same across these variations.

Multi-Path Structure. To evaluate the usefulness of our multi-path
generation module, we replaced it with a single-path structure and
retrained the network on our cartoon dataset. From Fig. 14, we can
see that using a dual-path structure can better generate gender-
associated facial features in terms of facial geometry and length of
eye lashes, and also enhance age-based features such as wrinkles.

Fine-tuned Only vs Layer Swapping. Instead of using a fine-tuned
generator directly, Toonify’s stylization is done by additionally swap-
ping or blending in higher layer weights from the original Style-
GAN2.We also investigated this approach for our framework, which
trades off stylization for increased realism. Fig. 15 compares our

(a)

(b)

Fig. 16. Our pipeline also supports image editing, with changes in: (a) pose,
and (b) illumination direction. Input image is courtesy of Mark Dixon(Public
Domain).

method to Toonify under two settings: when only the fine-tuned
stylized model is used, and when layer swapping is used. We can
see that our method produced perceptually better stylization results
and contained less artifacts.

4.4 Applications
Image Editing. Our pipeline can also support image editing via

latent code manipulation, e.g. for semantic editing. Fig. 16 presents
samples of pose and illumination editing. We used a closed-form
method [Shen and Zhou 2020] to extract semantic directions (e.g.
corresponding to pose and illumination changes) in𝑊 + from our
stylized generator. Results presented are based on extrapolation in
the semantic directions in𝑊 +. Further results can be seen in the
supplementary video.

Video Results. Our results can also be converted into video se-
quences via the first order motion technique [Siarohin et al. 2019],
with the input video driving the stylized image. Please note that the
pre-trained first order motion model only supports 256×256 frames.
We refer readers to the supplementary video.

5 CONCLUSION
In this paper, we presented AgileGAN, a framework that can gener-
ate high quality stylistic portraits. Our method can agilely create
high resolution portrait stylization models with a limited number
(around 100) of unpaired style exemplars and with a short training
time. This is done through a novel inversion-consistent transfer
learning framework that reduces the issue of inversion distribution
discrepancy. We also introduce a hierarchical Variational Autoen-
coder and its associated augmented 𝑍+ latent space that captures
different levels of facial features for improved portrait stylization.
Limitations. Even though we presented a large variety of com-

pelling portrait stylization results, there is still room for further
improvement in our approach. Fig. 17 shows some examples. (a) Our
method may fail to preserve accessories such as earrings or glasses
after translation, since such cases are under-represented in the style
datasets. (b) In some cases, we found that the generated gaze di-
rection may not be consistent with the input, as training images
are generally biased towards frontal gaze. (c) Classical oil paintings
tend to have neutral face expressions, so likewise the more intense
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Fig. 17. Examples of failure cases. (a) missing accessories (glasses), (b) dif-
ferent gaze directions, (c) different expressions (for oil paintings), (d) heavy
occlusion. Images are courtesy of BILL LIU(Public Domain), Luna(Public
Domain), ijohn9n9(Public Domain) and RONG(Public Domain).

expressions may not be reproduced. We believe these problems can
be mitigated by using more diverse datasets, where possible. (d) For
extremely abstract styles or input with heavy occlusion, our method
may not be able to to generate sufficiently accurate results.

Future Work. There are many future avenues to extend our work.
(1) While cross-domain editing has been demonstrated in Fig. 16 and
supplementary video, the latent space interpolation does not lead to
smooth variation in the hair. One possible research is to improve the
editing for consistency across such interpolated frames. (2) Another
natural step is to extend the current single-image generation to
video. We demonstrated some results using the first-order motion
technique, but only low resolution videos can be generated for
now, due to the use of pre-trained first-order motion models. It
may be interesting to investigate how motion consistency can be
more fundamentally integrated into our current pipeline for high
resolution styled video generation.
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pipeline. For the input images (a)(b) are from StyleGAN2, while (c) is real image courtesy of Ministerio Minería(Public Domain). Please zoom in to see details.
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Fig. 19. Artistic portrait generation results from a variety of input images. Input images on the left are from StyleGAN2. The other columns are our generated
results in four additional styles, with each style trained on either a category of MetFaces[Karras et al. 2020a] or a self-collected dataset. Please zoom in to see
details, and more examples are in the supplementary material.
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